28G SFP28 LWDM LR

Datasheet

Features:

- Duplex LC optical connector
- SFP28 MSA compliant
- SFF-8431 compliant
- Hot-pluggable SFP footprint
- Built-in digital diagnostic functions
- over 20km transmission on single-mode fiber
- Single +3.3V power supply
- Operating case temperature: -40~85C
- RoHS-6 compliant

Applications:

25GBASE LWDM

Product Description

The TPL-X510-XXDIR is an LWDM DFB 25Gigabit SFP28 transceiver. It is designed to transmit and receive optical data over $9/125\mu m$ single-mode optical fiber (SMF) and support up to 20km. The module has a duplex LC optical interface and all mechanical characteristics are compliant with the current SFP28 specification (SFF-8431 and SFF-8432).

Ordering information

Part No.	Data	Laser	Fiber	Distance*Not	Optical	Temp.	DDMI
	Rate		Type	e1	Interfa	*Note2	
					ce		
TPL-X520-L1DIR	25Gbps	LWDM-1269.23nm	SMF	20km	LC	IT	Υ
TPL-X520-L2DIR	25Gbps	LWDM-1273.54nm	SMF	20km	LC	IT	Υ
TPL-X520-L3DIR	25Gbps	LWDM-1277.89nm	SMF	20km	LC	IT	Υ
TPL-X520-L4DIR	25Gbps	LWDM-1282.26nm	SMF	20km	LC	IT	Υ
TPL-X520-L5DIR	25Gbps	LWDM-1286.66nm	SMF	20km	LC	IT	Υ
TPL-X520-L6DIR	25Gbps	LWDM-1291.10nm	SMF	20km	LC	IT	Υ
TPL-X520-L7DIR	25Gbps	LWDM-1295.56nm	SMF	20km	LC	IT	Υ
TPL-X520-L8DIR	25Gbps	LWDM-1300.05nm	SMF	20km	LC	IT	Υ
TPL-X520-L9DIR	25Gbps	LWDM-1304.58nm	SMF	20km	LC	IT	Υ
TPL-X520-LADIR	25Gbps	LWDM-1309.14nm	SMF	20km	LC	IT	Υ
TPL-X520-LBDIR	25Gbps	LWDM-1313.73nm	SMF	20km	LC	IT	Υ
TPL-X520-LCDIR	25Gbps	LWDM-1318.35nm	SMF	20km	LC	IT	Υ

Note1: 10km with 9/125µm SMF

Note2: ST: -40~ +85°C;

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883G	HBM class 1, 1000volts and above,
(ESD) to the	Method 3015.7	Contact discharge on Golden Finger.
Electrical Pins		
Electrostatic Discharge	IEC-61000-4-2	Compliant with standards.
to the enclosure	GR-1089-CORE	
Electromagnetic	FCC Part 15 Class B	Compliant with standards Noise
Interference (EMI)	EN55022:2006	frequency range: 30MHz to 18 GHz.
	VCCI Class B	System margins depend on customer
		host board and chassis design.
Immunity	IEC 61000-4-3	Compliant with standards.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	CDRH compliant and Class I laser
	EN (IEC) 60825-1:2007	product.
	EN (IEC) 60825-2:2004+A1	
Component Recognition	UL and CUL	Compliant with standards.
	EN60950-1:2006	
RoHS6	2002/95/EC 4.1&4.2	Compliant with standards*note3
	2005/747/EC 5&7&13	

Note3:

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for Trixon transceivers, because Trixon transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings*Note4

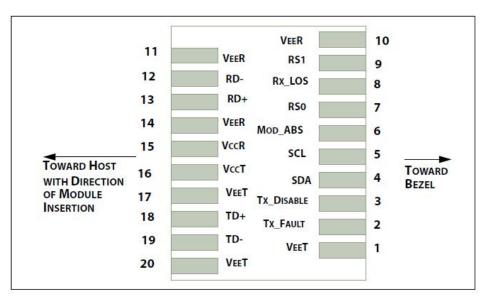
Parameter	Symbol	Min	Max	Unit	
Storage Temperature	Tst	-40	85	degC	
Relative Humidity (non-condensation)	RH	-	85	%	
Supply Voltage	VCC	-0.5	3.6	V	
Voltage on LVTTL Input	Vilvttl	-0.5	VCC+0.5	V	
LVTTL Output Current	Lolvttl	-	15	mA	
Voltage on Open Collector Output	Voco	0	6	V	

Note4: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	Торс	-40	-	85	$^{\circ}$	
Power Supply Voltage	VCC	3.1	-	3.5	V	
Operating Relative Humidity	ОН	5	-	95	%	
Supply Current	ls	-	-	600	mA	
Fiber Length			-	20	km	

Performance Specifications – Electrical


Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Data Rate, each Lane		-	25.78	-	Gbps	
Control I/O Voltage, High	VIH	2.0	-	VCC	V	
Control I/O Voltage, Low	VIL	0	-	0.8	V	
Tx Input Diff Voltage	VI	180	-	700	mV	
Tx Input Diff Impedance	ZIN	90	100	110	Ω	
Rx Output Diff Voltage	Vo	300		900	mV	
Rx Output Diff Impedance	ZOUT	90	100	110	Ω	

Performance Specifications – Optical

Parameter	Symbol	Min	Тур.	Max	Unit
	Т	ransmitter			
Center Wavelength	λt		LWDM		nm
Spectral Width(-20dB)	Pm	-	-	1	nm
Average Optical Power, each Lane	Pavg	0	-	6	dBm
TDP, each Lane		-	-	3.2	dB
Extinction Ratio	ER	3.5	-	-	dB
		Receiver			
Center Wavelength	Λr		LWDM		nm
Average Power at Receiver Input, each Lane			-	-17	dBm
Receiver Overload		-4	-		dBm
LOSS De-Assert	LOSd		-	-18	dBm

LOSS Assert	LOSa	-30	-	dBm
LOSS Hysteresis		0.5	-	dB

Pin Descriptions

Pin Function Definitions

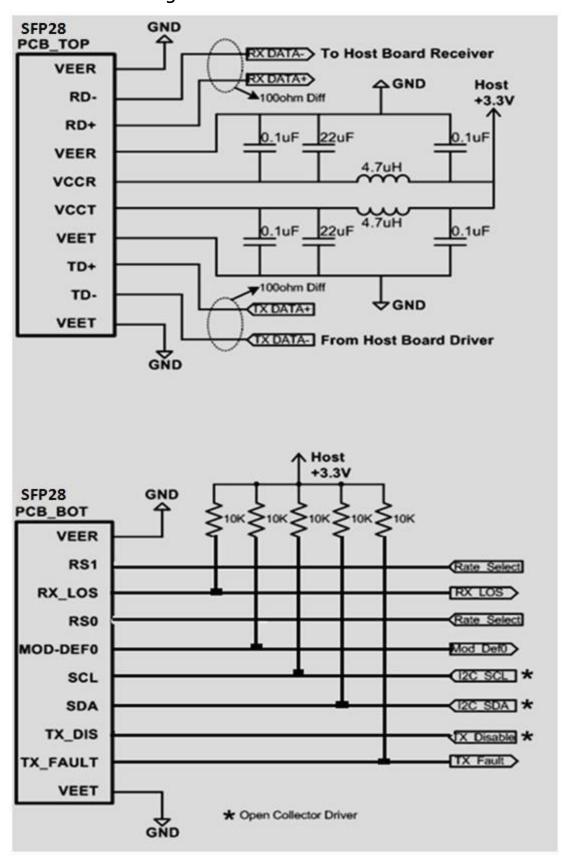
Pin Num.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 9
2	TX Fault	Transmitter Fault Indication	3	Note 5
3	TX Disable	Transmitter Disable	3	Note 6, Module disables on high or open.
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD-ABS	Module Definition 0	3	Note 7
7	RS0	RX Rate Select (LVTTL).	3	Rate Select 0, optionally controls SFP+
				module receiver. This pin is pulled low to
				VeeT with a >30K resistor
8	LOS	Loss of Signal	3	Note 8
9	RS1	TX Rate Select (LVTTL).	1	Rate Select 1, optionally controls SFP+
				module transmitter. This pin is pulled low
				to VeeT with a > 30K resistor
10	VeeR	Receiver Ground	1	Note 9
11	VeeR	Receiver Ground	1	Note 9
12	RD-	Inv. Received Data Out	3	Note 10
13	RD+	Received Data Out	3	Note 10
14	VeeR	Receiver Ground	1	Note 9
15	VccR	Receiver Power	2	3.3V ± 5%, Note 11
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 11
17	VeeT	Transmitter Ground	1	Note 9
18	TD+	Transmit Data In	3	Note 12
19	TD-	Inv. Transmit Data In	3	Note 12
20	VeeT	Transmitter Ground	1	Note 9

Note5: TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K_{\rm resistor}$ on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

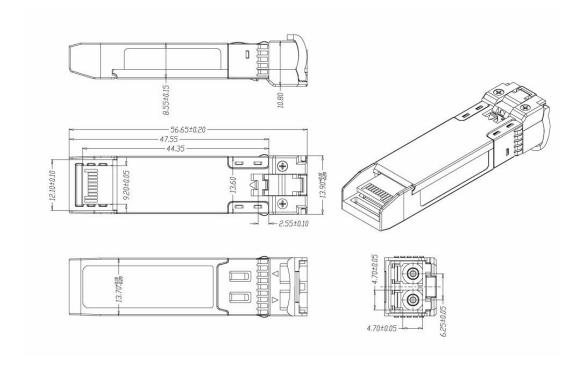
Note6: TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7K – 10 K_ resistor. Its states are: Low: Transmitter on; High: Transmitter Disabled; Open: Transmitter Disabled.

Note7: Module Absent, connected to VeeT or VeeR in the module.

Note8: LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K-10K_{\rm resistor}$. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.


Note9: The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.

Note10: RD-/+: These are the differential receiver outputs. They are AC coupling that is done inside the module and is thus not required on the host board.


Note11: VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V \pm 5\%$ at the SFP connector pin. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. VccR and VccT may be internally connected within the SFP transceiver module.

Note12: TD-/+: These are the differential transmitter inputs. They are AC-coupled that is done inside the module and is thus not required on the host board.

Application Reference Diagram

Mechanical Dimension

Eye Safety

These transceivers are Class 1 laser products. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: http://www.trixontech.com

Or contact Trixon Inc. listed at the end of the documentation to get the latest document.

Notice

Trixon reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Trixon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Add: # 202, Section A, Building 1 No.209, Sanse Road, Jinjiang District Industry Park Chengdu

610063. Sichuan P.R. CHINA

Tel: (+86) 028-85925400/Fax: (+86) 028-85925445

E-mail: info@trixontech.com http://www.trixontech.com

© Copyright Trixon 2014 All rights reserved.

