10GE BIDI XFP Series

Datasheet

Features:

- Operating data rate is 10.3Gbps
- Distance up to 60km
- Single 3.3V Power supply and TTL Logic Interface
- Bi-directional single LC Connector Interface
- Hot Pluggable
- Compliant with MSA XFP Specification
- Compliant with Telcordia GR-253-CORE and IEEE802.3ae
- Digital Diagnostic Monitor Interface
 Compatible with SFF-8077I
- Operating Case Temperature Standard: -5℃~+70℃

Product Description

Trixon 10GE BIDI XFP series products are small form factor (10 Gb/s) pluggable transceiver for bi-directional optical data communications, the transmit distance up to 60km. It's comply with XFP multi-source agreement (MSA: SFF-8077I). The Digital diagnostics functions and standard transceiver serial ID information are available via a 2-wire serial interface according XFP MSA, the transceiver is RoHS compliant and lead-free per Directive 2002/95/EC and 2005/747/EC.

Applications:

- 10G Ethernet
- 10G Fiber Channel
- Other Optical Link

Ordering information

Part No.	Data Rate	Wavelength TX/RX	Fiber Type	Distance	Optical Interface	Bail Color	Temp.* ^{Note1}	DDMI
TXB-TG10-23DCR	10.3Gbps	1270nm-DFB	SMF	10km	LC	Purple	ST	Y
		1330nm-PIN						
TXB-TG10-32DCR	10.3Gbps	1330nm-DFB	SMF	10km	LC	Blue	ST	Y
		1270nm-PIN						
TXB-TG40-23DCR	10.3Gbps	1270nm-DFB	SMF	40km	LC	Purple	ST	Y
		1330nm-PIN						
TXB-TG40-32DCR	10.3Gbps	1330nm-DFB	SMF	40km	LC	Blue	ST	Y
		1270nm-PIN						
TXB-TG60-23DCR	10.3Gbps	1270nm-DFB	SMF	60km	LC	Purple	ST	Y
		1330nm-APD						
TXB-TG60-32DCR	10.3Gbps	1330nm-DFB	SMF	60km	LC	Blue	ST	Y
		1270nm-APD						

Note1: ST: -5 ~ +70 deg C

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883G	HBM class 1, 1000volts and above,
(ESD) to the	Method 3015.7	Contact discharge on Golden Finger.
Electrical Pins		
Electrostatic Discharge	IEC-61000-4-2	Compliant with standards.
to the enclosure	GR-1089-CORE	
Electromagnetic	FCC Part 15 Class B	Compliant with standards Noise
Interference (EMI)	EN55022:2006	frequency range: 30MHz to 18 GHz.
	VCCI Class B	System margins depend on customer
		host board and chassis design.
Immunity	IEC 61000-4-3	Compliant with standards.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	CDRH compliant and Class I laser
	EN (IEC) 60825-1:2007	product.
	EN (IEC) 60825-2:2004+A1	
Component Recognition	UL and CUL	Compliant with standards.
	EN60950-1:2006	
RoHS6	2002/95/EC 4.1&4.2	Compliant with standards*note2
	2005/747/EC 5&7&13	

Note2:

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for Trixon transceivers, because Trixon transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings*_{Note3}

Parameter Symbol	Min	Max	Unit
------------------	-----	-----	------

Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{cc}	0	+4	V
Operating Humidity		5	95	%

Note3: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case	т	-5		70	°C	ST
Temperature	T _C	-5	-	70	C	21
Power Supply Voltage	VCC	3.14	3.3	3.47	V	
Power Supply Current	I _{cc}	-	-	450	mA	
Bit Rate		-	10.3	-	Gbps	
I2C Clock Frequency	f _{cl}	-	-	100	kHz	

Performance Specifications – Electrical

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
		Transmi	itter			
TX CML Inputs Voltage (Differential)	Vin	150	-	950	mVpp	AC coupled inputs
Input Impedance (Differential)	Zin		100		ohm	
Tx_DISABLE Input Voltage – High		1.7	-	Vcc+0.3	V	
Tx_DISABLE Input Voltage – Low		-0.3	-	0.8	V	
Tx_FAULT Output Voltage – High		2	-	-	V	OC output, should be pull up with 4.7K – 10 K $_{\Omega}$ on the host board
Tx_FAULT Output Voltage – Low		-	-	0.4	V	Iol = 1mA
		Receiv	ver			
CML Outputs Voltage (Differential)	Vout	300	-	850	mVpp	AC coupled outputs
Output Impedance (Differential)	Zout	-	100	-	ohm	
Rx_LOS Output Voltage – High		2	-	-	V	OC output, should be pull up with 4.7K – 10 K Ω on the host board
Rx_LOS Output Voltage – Low		-	-	0.4	V	Iol = 1mA
MOD_DEF (0:2)	V _{OH}	2.5			V	
	V _{OL}	0		0.5	V	_

Timing Specifications

Parameter	Symbol	Min	Тур.	Max	Unit
TX Disable Assert Time	T_off	-	-	100	us
TX Disable Negate Time	T_on	-	-	2	ms
RX_LOS Assert Time	T_los_on	-	-	100	US
RX_LOS De-Assert Time	T_los_off	-	-	100	us

Performance Specifications – Optical

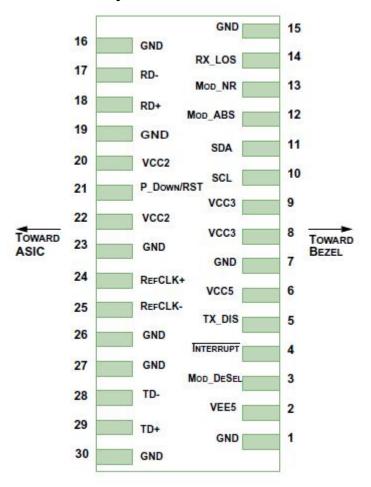
(1270nm/1330nm DFB and 1330nm/1270nm PIN, 10km-SMF)

Parameter	Symbol	Min	Тур.	Max	Unit
	Т	ransmitter			
Contro Wayalangth		1260	1270	1280	nm
Centre Wavelength	λς -	1320	1330	1340	nm
Side Mode	SMSR	30			dB
Suppression Ratio	SIVISK	50	-	-	üБ
Spectral Width (-20dB)	Δλ	-	-	1	nm
Average Output Power* ^{note4}	Pout	-5	-	0	dBm
Extinction Ratio	ER	3.5	-	-	dB
Average Power of OFF Transmitter	Pout-off	-	-	-30	dBm
Transmitter Dispersion Penalty	TDP	-	-	2	dB
Relative Intensity Noise	RIN	-	-	-128	dB/Hz
Output Optical Eye		Complia	nt with IEEE802.	3ae-2005	
		Receiver			
Contro Wouslangth		1320	-	1340	nm
Centre Wavelength	λc -	1260	-	1280	nm
Receiver Sensitivity* ^{note5}	SEN	-	-	-14	dBm
Receiver Overload	Pmax	0.5	-	-	dBm
LOS De-Assert	LOSD	-	-	-18	dBm
LOS Assert	LOSA	-30	-	-	dBm
LOS Hysteresis	LOSн	0.5	-	4	dB

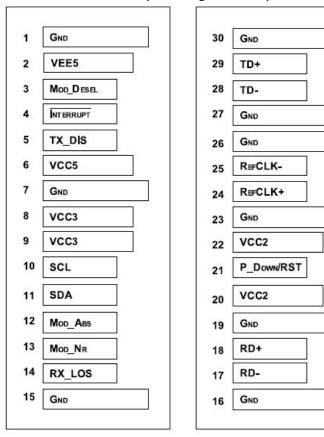
(1270nm/1330nm DFB and 1330nm/1270nm PIN, 40km-SMF)

Parameter	Symbol	Min	Тур.	Max	Unit
	Т	ransmitter			
) -	1260	1270	1280	nm
Centre Wavelength	λc –	1320	1330	1340	nm
Side Mode	CMCD	20			d۵
Suppression Ratio	SMSR	30	-	-	dB
Spectral Width (-20dB)	Δλ	-	-	1	nm
Average Output Power* ^{note4}	Pout	+1	-	+5	dBm
Extinction Ratio	ER	3.5	-	-	dB
Average Power of OFF Transmitter	Pout-off	-	-	-30	dBm
Transmitter Dispersion Penalty	TDP	-	-	2	dB
Relative Intensity Noise	RIN	-	-	-128	dB/Hz
Output Optical Eye		Complia	nt with IEEE802.	.3ae-2005	
		Receiver			
Contro Movelon eth		1320	-	1340	nm
Centre Wavelength	λc –	1260		1280	nm
Receiver Sensitivity* ^{note5}	SEN	-	-	-15	dBm
Receiver Overload	Pmax	0.5	-	-	dBm
LOS De-Assert	LOSD	-	_	-18	dBm

LOS Assert	LOSA	-30	-	-	dBm
LOS Hysteresis	LOSн	0.5	-	4	dB


(1270nm/1330nm DFB and 1330nm/1270nm APD, 60km-SMF)

Parameter	Symbol	Min	Тур.	Max	Unit
	1	ransmitter			
Contro Wayalanath		1260	1270	1280	nm
Centre Wavelength	λς -	1320	1330	1340	nm
Side Mode	SMSR	20			dB
Suppression Ratio	SIVISK	30	-	-	uв
Spectral Width (-20dB)	$\Delta\lambda$	-	-	1	nm
Average Output Power* ^{note4}	Pout	+1	-	+6	dBm
Extinction Ratio	ER	3.5	-	-	dB
Average Power of OFF Transmitter	Pout-off	-	-	-30	dBm
Transmitter Dispersion Penalty	TDP	-	-	2	dB
Relative Intensity Noise	RIN	-	-	-128	dB/Hz
Output Optical Eye		Complia	nt with IEEE802.	3ae-2005	
		Receiver			
Cantra Wayalan ath		1320	-	1340	nm
Centre Wavelength	λς -	1260	-	1280	nm
Receiver Sensitivity* ^{note5}	SEN	-	-	-20	dBm
Receiver Overload	Pmax	0.5	-	-	dBm
LOS De-Assert	LOSD	-	-	-18	dBm
LOS Assert	LOSA	-30	-	-	dBm
LOS Hysteresis	LOSн	0.5	_	4	dB


Note4: Output is coupled into a 9/125um SMF.

Note5: Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, BER \leq 10-12, with 9/125um SMF

SFP Transceiver Electrical Pad Layout

Host PCB XFP pad assignment top view

Bottom of Board (As viewed thru top of board) Top of Board

XFP module contact assignment

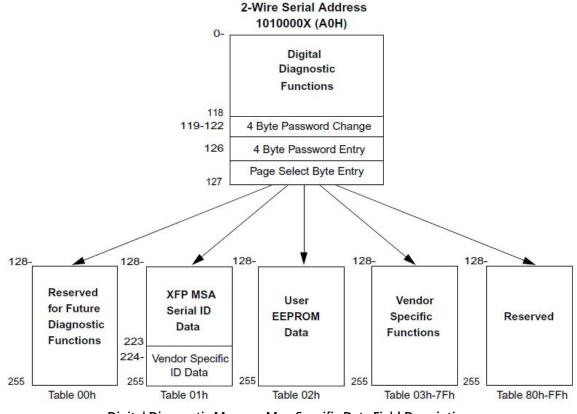
Pin Num.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 10
2	TX Fault	Transmitter Fault Indication	3	Note 6
3	TX Disable	Transmitter Disable	3	Note 7, Module disables on high or open.
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD-ABS	Module Definition 0	3	Note 8
7	RS0	RX Rate Select (LVTTL).	3	Rate Select 0, optionally controls SFP+ module receiver. This pin is pulled low to VeeT with a >30K resistor
8	LOS	Loss of Signal	3	Note 9
9	RS1	TX Rate Select (LVTTL).	1	Rate Select 1, optionally controls SFP+ module transmitter. This pin is pulled low to VeeT with a >30K resistor
10	VeeR	Receiver Ground	1	Note 10
11	VeeR	Receiver Ground	1	Note 10
12	RD-	Inv. Received Data Out	3	Note 11
13	RD+	Received Data Out	3	Note 11
14	VeeR	Receiver Ground	1	Note 10
15	VccR	Receiver Power	2	3.3V ± 5%, Note 12
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 12
17	VeeT	Transmitter Ground	1	Note 10
18	TD+	Transmit Data In	3	Note 13
19	TD-	Inv. Transmit Data In	3	Note 13
20	VeeT	Transmitter Ground	1	Note 10

Pin Function Definitions

Note6: TX Fault is an open collector/drain output, which should be pulled up with a 4.7K - 10K resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note7: TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7K - 10 K_{-}$ resistor. Its states are: Low: Transmitter on; High: Transmitter Disabled; Open: Transmitter Disabled.

Note8: Module Absent, connected to VeeT or VeeR in the module.


Note9: LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K - 10K_{resistor}$. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note10: The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.

Note11: RD-/+: These are the differential receiver outputs. They are AC coupling that is done inside the module and is thus not required on the host board.

Note12: VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V \pm 5\%$ at the SFP connector pin. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. VccR and VccT may be internally connected within the SFP transceiver module.

Note13: TD-/+: These are the differential transmitter inputs. They are AC-coupled that is done inside the module and is thus not required on the host board.

Digital Diagnostic Memory Map Specific Data Field Descriptions

As defined by the XFP MSA, Trixon XFP series products provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

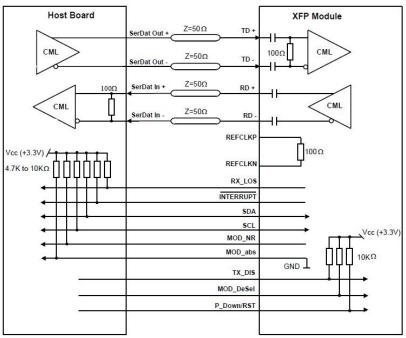
- Transceiver temperature
- Laser bias current
- -Transmitted optical power
- Received optical power
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

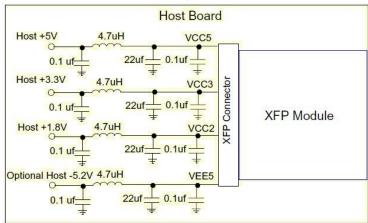
The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory..

Digital Diagnostic Monitoring Specifications

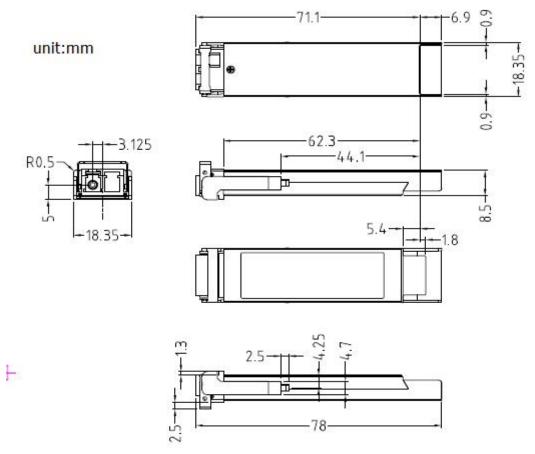
Monitor accuracy						
Parameter	Min	Тур	Max	Units		
Internally measured transceiver temperature	-	-	±3	°C		


Internally measured transceiver supply voltage	-	-	±3%	V
Measured TX bias current	-	-	±10	%
Measured TX output power	-	-	±3	dBm
Measured RX received average optical power	-	-	±3	dBm

Dynamic range for operation*Note16


Parameter		H-Alarm	H-Warnin	L-Warning	L-Alarm	Units
			g			
Internally measured	ST	+85	+80	-5	-10	°C
transceiver temperature	ІТ	+100	+95	-35	-40	Ĵ
Internally measured transcei	ver supply voltage	3.63	3.47	3.13	2.97	V
Measured TX bias current	FP/DFB Laser	120	110	10	5	
Measured TX output power		Pout_MAX+1	Pout_MAX	Pout_MIN	Pout_MIN-1	dBm
Measured RX received average optical power		Overload+1	Overload	SEN	SEN-2	dBm

Note16: It is permissible to be adjusted according to the manufacturer' s testing result.


Recommended Circuit

Recommended Host Board Power Supply Circuit

Mechanical Dimension

Eye Safety

These transceivers are Class 1 laser products. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: <u>http://www.trixontech.com</u> Or contact Trixon Inc. listed at the end of the documentation to get the latest document.

Notice

Trixon reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Trixon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Add: # 202, Section A, Building 1 No.209, Sanse Road, Jinjiang District Industry Park Chengdu 610063. Sichuan P.R. CHINA Tel: (+86) 028-85925400/Fax: (+86) 028-85925445 E-mail: info@trixontech.com http://www.trixontech.com © Copyright Trixon 2014 All rights reserved

