# GBE Bidirectional SFP Transceiver With Digital Diagnostic Function





### Features:

- Operating data rate at 1.25Gbps
- Distance up to 10km
- Single 3.3V Power supply and TTL Logic Interface
- Single LC Connector Interface
- Hot Pluggable
- Compliant with MSA SFP Specification
- Compliant with Telcordia GR-253-CORE and IEEE802.3
- Digital Diagnostic Monitor Interface Compatible with SFF-8472
- Operating Case Temperature Standard: 0°C ~+75°C Industrial: -40°C ~+85℃

# Applications:

- Gigabit Ethernet Switches and Routers
- Fiber Channel Switch
- Other Optical Link

# **Product Description**

The GBE Bidirectional SFP optical transceivers are high performance, cost effective modules. They offer the customer a range of design options, including optional DDMI, standard or industrial temperature ranges. They are designed to provide Gigabit Ethernet compliant connections for 1.25 Gbps at short, intermediate and long reach links. These transceivers are qualified in accordance with GR-468-CORE.

### **Ordering information**

| Part No.       | Data  | Laser      | Fiber | Distance*Note1 | Optical   | Bail   | Temp.* <sup>Note2</sup> | DDMI |
|----------------|-------|------------|-------|----------------|-----------|--------|-------------------------|------|
|                | Rate  |            | Туре  |                | Interface | Color  |                         |      |
| TSB-GE10-35DCR | 1.25G | 1310nm-FP  | SMF   | 10Km           | LC        | Blue   | ST                      | YES  |
| TSB-GE10-53DCR | 1.25G | 1550nm-DFB | SMF   | 10Km           | LC        | Purple | ST                      | YES  |
| TSB-GE10-35DIR | 1.25G | 1310nm-FP  | SMF   | 10Km           | LC        | Blue   | IT                      | YES  |
| TSB-GE10-53DIR | 1.25G | 1550nm-DFB | SMF   | 10Km           | LC        | Purple | IT                      | YES  |

Note1: 1/10/40/80Km with 9/125µm SMF

Note2: ST: 0 ~ +75deg C IT: -40 ~ +85 deg C.

### **Regulatory Compliance**

| Feature                 | Standard                         | Performance                             |
|-------------------------|----------------------------------|-----------------------------------------|
| Electrostatic Discharge | MIL-STD-883G                     | Class 1C (>1000 V)                      |
| (ESD) to the            | Method 3015.7                    |                                         |
| Electrical Pins         |                                  |                                         |
| Electrostatic Discharge | EN 55024:1998+A1+A2              | Compliant with standards                |
| to the enclosure        | IEC-61000-4-2                    |                                         |
|                         | GR-1089-CORE                     |                                         |
| Electromagnetic         | FCC Part 15 Class B              | Compliant with standards Noise          |
| Interference (EMI)      | EN55022:2006                     | frequency range: 30                     |
|                         | CISPR 22B :2006                  | MHz to 6 GHz. Good system               |
|                         | VCCI Class B                     | EMI design practice required to achieve |
|                         |                                  | Class B margins.                        |
|                         |                                  | System margins depend on customer       |
|                         |                                  | host board and chassis design.          |
| Immunity                | EN 55024:1998+A1+A2              | Compliant with standards.               |
|                         | IEC 61000-4-3                    | 1kHz sine-wave, 80% AM,                 |
|                         |                                  | from 80 MHz to 1 GHz. No effect on      |
|                         |                                  | transmitter/receiver performance is     |
|                         |                                  | detectable between these limits.        |
| Laser Eye Safety        | FDA 21CFR 1040.10 and 1040.11    | CDRH compliant and Class I              |
|                         | EN (IEC) 60825-1:2007            | laser product.                          |
|                         | EN (IEC) 60825-2:2004+A1         | TUV Certificate No. R50271605           |
|                         | EN (IEC) 60950-1:2006+A1+A11+A12 |                                         |
| Component Recognition   | UL and CUL                       | TUV Certificate No. E344594             |
|                         | EN60950-1:2006                   | (CB:JPTUV-053877)                       |
| RoHS2.0                 | 20011/65/EU                      | Compliant with standards                |

Note: For update of the equipment and strict control of raw materials, Trixon has the ability to supply the customized products since Sep.2008, which meets the requirements of RoHS6 (Restrictions on use of certain Hazardous Substances) of European Union.

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for Trixon transceivers, because Trixon transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

### Absolute Maximum Ratings\*Note3

| Parameter           | Symbol          | Min | Max | Unit |
|---------------------|-----------------|-----|-----|------|
| Storage Temperature | Ts              | -40 | +85 | °C   |
| Supply Voltage      | V <sub>cc</sub> | 0   | 3.6 | V    |
| Operating Humidity  | -               | 5   | 95  | %    |

Note3: Exceeding any one of these values may destroy the device permanently.

# **Recommended Operating Conditions**

| Parameter                  | Symbol          | Min  | Typical | Max  | Unit | Notes |
|----------------------------|-----------------|------|---------|------|------|-------|
| Operating Case Temperature |                 | -5   |         | 75   | °C   | ST    |
|                            | IC              | -40  |         | 85   | °C   | IT    |
| Power Supply Voltage       | V <sub>cc</sub> | 3.14 | 3.3     | 3.47 | V    |       |
| Bit Rate                   |                 |      | 1.25    |      | Gbps |       |
| Supply Current             | I <sub>CC</sub> |      |         | 300  | mA   |       |

# **Performance Specifications – Electrical**

| Parameter                       | Symbol          | Min    | Тур.   | Max  | Unit | Notes                                               |
|---------------------------------|-----------------|--------|--------|------|------|-----------------------------------------------------|
|                                 |                 | Transm | nitter |      |      |                                                     |
| CML Inputs(Differential)        | Vin             | 500    |        | 2400 | mVpp | AC coupled inputs                                   |
| Input Impedance (Differential)  | Zin             |        | 100    |      | ohm  | Rin > 100 ohms                                      |
|                                 |                 |        |        |      |      | @ DC                                                |
| Tx_DISABLE Input Voltage – High |                 | 2      |        | Vcc  | V    |                                                     |
| Tx_DISABLE Input Voltage – Lo   |                 | 0      |        | 0.8  | V    |                                                     |
| Tx_FAULT Output Voltage – High  |                 | 2      |        | Vcc  | V    |                                                     |
| Tx_FAULT Output Voltage – Low   |                 | 0      |        | 0.8  | V    |                                                     |
|                                 |                 | Recei  | ver    |      |      |                                                     |
| CML Outputs (Differential)      | Vout            | 700    |        | 1600 | mVpp | AC coupled outputs                                  |
| Output Impedance (Differential) | Zout            |        | 100    |      | ohm  |                                                     |
| Rx_LOS Output Voltage – High    |                 | 2      |        |      | V    | OC output, should be                                |
|                                 |                 |        |        |      |      | pull up with 4.7K – 10 K $\Omega$ on the host board |
| Rx_LOS Output Voltage – Low     |                 | 0      |        | 0.5  | V    |                                                     |
| MOD_DEF ( 0:2 )                 | V <sub>OH</sub> | 2.5    |        |      | V    | With Serial ID                                      |
|                                 | V <sub>OL</sub> | 0      |        | 0.5  | V    | _                                                   |

# I/O Timing for Control & Status Functions Timing

| Parameter                            | Symbol    | Min | Тур. | Max | Unit |
|--------------------------------------|-----------|-----|------|-----|------|
| TX Disable Assert Time               | t_off     |     |      | 10  | us   |
| TX_DISABLE Negate Time               | t_on      |     |      | 1   | ms   |
| Time to initialize, include reset of | t_init    |     |      | 300 | ms   |
| TX_FAULT                             |           |     |      |     |      |
| TX Fault Assert Time                 | t_fault   |     |      | 100 | us   |
| TX Disable to reset                  | t_reset   | 10  |      |     | US   |
| LOS Assert Time                      | t_loss_on |     |      | 100 | US   |

us

## **Performance Specifications – Optical**

| Parameter                        | Symbol           | Min          | Тур.        | Max        | Unit       | Note                 |
|----------------------------------|------------------|--------------|-------------|------------|------------|----------------------|
|                                  |                  | Trans        | mitter      |            |            |                      |
| Construe Marvalous eth           |                  | 1280         | 1310        | 1340       | nm         | 1310nmTX/1550nmRX    |
| Centre Wavelength                | λς -             | 1510         | 1550        | 1580       | nm         | 1550nmTX/1310nmRX    |
| Constant NAC July *Note4         |                  |              |             | 4          | nm         | FP-LD                |
| Spectral Width* <sup>Note4</sup> | Δλ -             |              |             | 1          | nm         | DFB-LD               |
| Average Output Power             | P <sub>OUT</sub> | -9           |             | -3         | dBm        |                      |
| Extinction Ratio                 | ER               | 8.2          |             |            | dB         |                      |
| Average Power of OFF             | P <sub>OFF</sub> |              |             | -45        | dBm        |                      |
| Output Optical Eye               | Compli           | ant with eye | e mask Telc | ordia GR-2 | 53-CORE ar | nd IEEE 802.3ah-2004 |
|                                  |                  | Rec          | eiver       |            |            |                      |
| Contro Wayalangth                |                  | 1510         |             | 1580       | nm         | 1310nmTX/1550nmRX    |
| Centre Wavelength                | λc -             | 1280         |             | 1340       | nm         | 1550nmTX/1310nmRX    |
| Sensitivity* <sup>Note5</sup>    | P <sub>IN</sub>  |              |             | -22        | dBm        |                      |
| Receiver Overload                | Overload         | -3           |             |            | dBm        |                      |
| Optical Return Loss              |                  | 12           |             |            | dB         |                      |
| LOS Assert                       | LOSA             | -35          |             |            | dBm        |                      |
| LOS De-Assert                    | LOSD             |              |             | -25        | dBm        |                      |
| LOS Hysteresis                   |                  | 0.5          |             | 4          | dB         |                      |

#### ( 1310nm/1550nm ,FP/DFB and PIN $\cdot~$ 10km )

Note4: VSCEL LD and FP LD measured spectral width RMS, DFB LD measured spectral width –20dB. Note5: Minimum average optical power measured at the BER less than 1E-10@pattern is PRBS2<sup>7</sup>-1@ER=10dB.

## SFP Transceiver Electrical Pad Layout

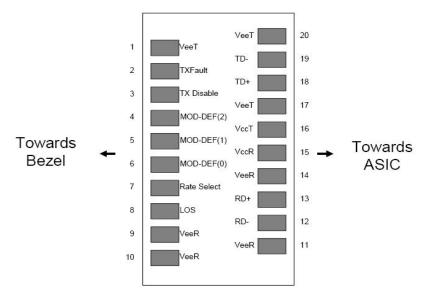



Diagram of Host Board Connector Block Pin Numbers and Names

### **Pin Function Definitions**

| Pin Num. | Name       | Function                     | Plug Seq. | Notes                                    |
|----------|------------|------------------------------|-----------|------------------------------------------|
| 1        | VeeT       | Transmitter Ground           | 1         | Note 10                                  |
| 2        | TX Fault   | Transmitter Fault Indication | 3         | Note 6                                   |
| 3        | TX Disable | Transmitter Disable          | 3         | Note 7, Module disables on high or open. |
| 4        | SDA        | Module Definition 2          | 3         | 2-wire Serial Interface Data Line.       |
| 5        | SCL        | Module Definition 1          | 3         | 2-wire Serial Interface Clock.           |
| 6        | MOD-ABS    | Module Definition 0          | 3         | Note 8                                   |
| 7        | RS0        | RX Rate Select (LVTTL).      | 3         | NC. Function not available               |
| 8        | LOS        | Loss of Signal               | 3         | Note 9                                   |
| 9        | RS1        | TX Rate Select (LVTTL).      | 1         | NC. Function not available               |
| 10       | VeeR       | Receiver Ground              | 1         | Note 10                                  |
| 11       | VeeR       | Receiver Ground              | 1         | Note 10                                  |
| 12       | RD-        | Inv. Received Data Out       | 3         | Note 11                                  |
| 13       | RD+        | Received Data Out            | 3         | Note 12                                  |
| 14       | VeeR       | Receiver Ground              | 1         | Note 10                                  |
| 15       | VccR       | Receiver Power               | 2         | 3.3V ± 5%, Note 12                       |
| 16       | VccT       | Transmitter Power            | 2         | 3.3V ± 5%, Note 12                       |
| 17       | VeeT       | Transmitter Ground           | 1         | Note 10                                  |
| 18       | TD+        | Transmit Data In             | 3         | Note 13                                  |
| 19       | TD-        | Inv. Transmit Data In        | 3         | Note 13                                  |
| 20       | VeeT       | Transmitter Ground           | 1         | Note 10                                  |

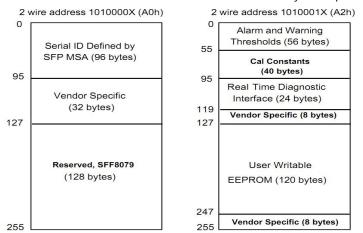
Note6: TX Fault is an open collector/drain output, which should be pulled up with a  $4.7K - 10K_{resistor}$  on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note7: TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a  $4.7K - 10 K_{resistor}$ . Its states are: Low (0 – 0.8V): Transmitter on (>0.8, < 2.0V): Undefined. High (2.0 – 3.465V): Transmitter Disabled. Open: Transmitter Disabled.

Note8: Module Absent, connected to VeeT or VeeR in the module.

Note9: LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K - 10K resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note10: The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.


Note11: RD-/+: These are the differential receiver outputs. They are AC coupled 100\_ differential lines which should be terminated with 100\_ (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.

Note12: VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Maximum supply current is 300mA. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.

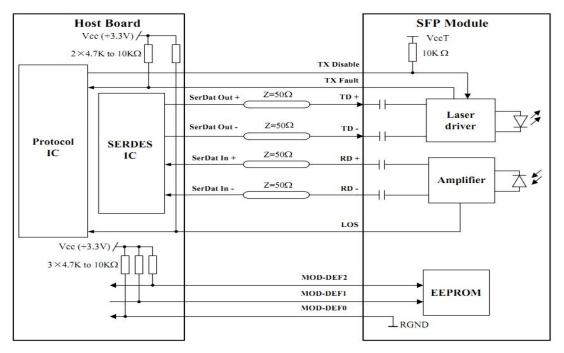
Note13: TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100\_ differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.

# **Digital Diagnostic Functions:**

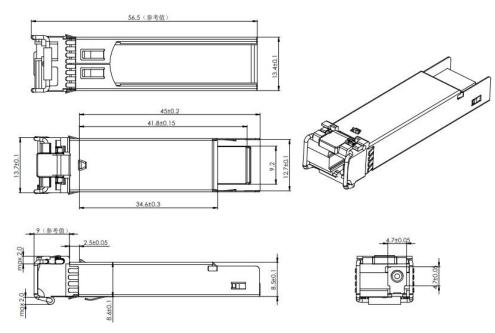
- 1) SFP transceiver supports the 2-wire serial communication protocol as defined in SFP MSA: in which defines a 256-byte memory map in EEPROM at 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface be assigned with 8 bit address 1010001X (A2h). Additionally, SFP transceivers provide a unique digital diagnostic monitoring interface (DDMI), which allows real-time access to product operating parameters such as transceiver supply voltage, transceiver temperature, transmitted optical power, laser bias current and received optical power. It also defines alarm and warning threshold, which alerts end-users when particular operating parameters are outside of factory setting.
- 2) When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into those segments of the EEPROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-Directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.



# **Digital Diagnostic Monitoring Specifications**


- Additionally, SFP transceivers TSB-xxxx-xxDxR<sup>\*Note14</sup> provide a unique digital diagnostic monitoring interface (DDMI) be assigned with 8 bit address 1010001X (A2h) as defined in SFP MSA, which allows real-time access to product operating parameters such as transceiver supply voltage, transceiver temperature, transmitted optical power, laser bias current and received optical power. It also defines alarm and warning threshold, which alerts end-users when particular operating parameters are outside of factory setting.
- 2) Digital diagnostics for the TSB-xxxx-xxDxR are internally calibrated by default. Calibration and alarm/warning threshold data is written during device manufacturing.

| Monitor accuracy                               |         |           |          |          |       |      |
|------------------------------------------------|---------|-----------|----------|----------|-------|------|
| Parameter                                      | Min     | Тур       | Max      | Units    |       |      |
| Internally measured transceiver temperature    |         |           | ±3       | °C       |       |      |
| Internally measured transceiver supply voltage |         |           | ±3%      | V        |       |      |
| Measured TX bias current                       |         |           | ±10      | %        |       |      |
| Measured TX output power                       |         |           | ±3       | dB       |       |      |
| Measured RX received average optical power     |         |           | ±3       | dB       |       |      |
| Dynamic range for operation                    |         |           |          |          |       |      |
| Parameter                                      | H-Alarm | H-warning | L-Warnin | L- Alarm | Units | Note |
|                                                |         |           | g        |          |       |      |
| Internally measured transceiver temperature    | +85     | 80        | 0        | -5       | °C    | ST   |
|                                                | 100     | 95        | -35      | -40      | °C    | IT   |


| Internally measured transceiver supply voltage | 3.9        | 3.6      | 3.0             | 2.7                | V   |
|------------------------------------------------|------------|----------|-----------------|--------------------|-----|
| Measured TX bias current                       | 100        | 80       | 2               | 1                  | mA  |
| Measured TX output power                       | Pout_max+1 | Pout_max | Pout_min        | Pout_min-1         | dBm |
| Measured RX received average optical power     | Overload+1 | Overload | P <sub>IN</sub> | P <sub>IN</sub> -2 | dBm |

Note14: TSB-xxxx-xxxxR provides an EEPROM addressed 1010000X (A0h) as defined in SFP MSA, and only TSB-xxxx-xxDxR is compliant with digital diagnostic monitoring interface (DDMI) be assigned with 8 bit address 1010001X (A2h).

### **Recommended Circuit**



### **Mechanical Dimension**



# Eye Safety

This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

### **Obtaining Document**

You can visit our website: http://www.trixontech.com Or contact Trixon Inc. listed at the end of the documentation to get the latest document.

### Notice

Trixon reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Trixon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Add: Building 2#,No.1000 Tiangong Avenue,Xinxing Street,Tianfu New Area, Chengdu Sichuan Province, 610213, China Tel: (+86) 028-84556672 Fax: (+86) 028-63025144 E-mail: info@trixontech.com http://www.trixontech.com © Copyright Trixon 2014 All rights reserved.

