10G Ethernet SFP+ Series

10KM

Datasheet

Features:

- Operating data rate is 11.3Gbps
- Distance up to 300m~80km
- Single 3.3V Power supply and TTL Logic Interface
- Duplex LC Connector Interface
- Hot Pluggable
- Compliant with MSA SFP Specification
- Compliant with Telcordia GR-253-CORE and IEEE802.3ae
- Digital Diagnostic Monitor Interface
 Compatible with SFF-8472
- Operating Case Temperature

Standard: -5° C ~+70°C Industrial: -40° C ~+85°C

Applications:

- 10GBASE-SR/SW/LR/LW/ER/EW/ZR/ZW
- 10G Fiber Channel
- Other Optical Link

Product Description

Trixon SFP+ series products is small form factor (10 Gb/s) pluggable transceiver for duplex optical data communications. It's comply with SFP+ multi-source agreement (MSA: SFF-8431), also be comply with 10-Gigabit Ethernet IEEE802.3ae and 10G Fiber Channel. The Digital diagnostics functions and standard transceiver serial ID information are available via a 2-wire serial interface according SFP+MSA, the transceiver is RoHS compliant and lead-free per Directive 2002/95/EC and 2005/747/EC.

Ordering information

Part No.	Data	Laser	Fiber	Distance*Note1	Optical	Bail	Temp.*Note2	DDMI
	Rate		Туре		Interface	Color		
TPS-TG10-31DCR	11.3Gbps	1310nm-DFB	SMF	10km	LC	Blue	ST	Υ
TPS-TG10-31DIR	11.3Gbps	1310nm-DFB	SMF	10km	LC	Blue	IT	Υ

Note1: 300m with 50/125µm OM3 MMF, 2km/10km/40km/80km with 9/125µm SMF

Note2: ST: $-5 \sim +70 \text{ deg C}$ IT: $-40 \sim +85 \text{ deg C}$

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883G	HBM class 1, 1000volts and above,
(ESD) to the	Method 3015.7	Contact discharge on Golden Finger.
Electrical Pins		
Electrostatic Discharge	IEC-61000-4-2	Compliant with standards.
to the enclosure	GR-1089-CORE	
Electromagnetic	FCC Part 15 Class B	Compliant with standards Noise
Interference (EMI)	EN55022:2006	frequency range: 30MHz to 18 GHz.
	VCCI Class B	System margins depend on customer
		host board and chassis design.
Immunity	IEC 61000-4-3	Compliant with standards.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	CDRH compliant and Class I laser
	EN (IEC) 60825-1:2007	product.
	EN (IEC) 60825-2:2004+A1	
Component Recognition	UL and CUL	Compliant with standards.
	EN60950-1:2006	
RoHS6	2002/95/EC 4.1&4.2	Compliant with standards*note3
	2005/747/EC 5&7&13	

Note3:

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for Trixon transceivers, because Trixon transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings*Note4

Parameter	Symbol	Min	Max	Unit	
Storage Temperature	T _S	-40	+85	°C	
Supply Voltage	V _{CC}	0	+4	V	
Operating Humidity		5	95	%	

Note4: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case	T _C -	-5	-	70	°C	ST
Temperature	10 -	-40	-	85	°C	IT
Power Supply Voltage	VCC	3.14	3.3	3.47	V	
Power Supply Current	1	-	-	300	mA	300m\2km\10km
rower supply current	I _{cc} –	-	-	450	mA	40km\80km
Bit Rate		9.95	10.3	11.3	Gbps	
I2C Clock Frequency	fcl	-	-	100	kHz	

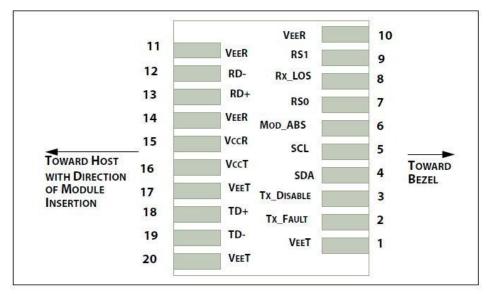
Performance Specifications – Electrical

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
		Transmi	tter			
TX CML Inputs Voltage (Differential)	Vin	150	-	950	mVpp	AC coupled inputs
Input Impedance (Differential)	Zin		100		ohm	
Tx_DISABLE Input Voltage – High		1.7	-	Vcc+0.3	V	
Tx_DISABLE Input Voltage – Low		-0.3	-	0.8	V	
Tx_FAULT Output Voltage – High		2	-	-	V	OC output, should be pull up with 4.7K – 10 K Ω on the host board
Tx_FAULT Output Voltage – Low		-	-	0.4	V	I _{OL} = 1mA
		Receiv	er			
CML Outputs Voltage (Differential)	Vout	300	-	850	mVpp	AC coupled outputs
Output Impedance (Differential)	Zout	-	100	-	ohm	
Rx_LOS Output Voltage – High		2	-	-	V	OC output, should be pull up with 4.7K – 10 K Ω on the host board
Rx_LOS Output Voltage – Low		-	-	0.4	V	I _{OL} = 1mA
MOD_DEF (0:2)	V _{OH}	2.5			V	
	V _{OL}	0		0.5	V	_

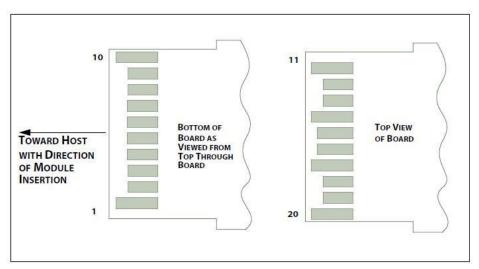
Timing Specifications

Parameter	Symbol	Min	Тур.	Max	Unit
TX Disable Assert Time	T_off	-	-	100	us
TX Disable Negate Time	T_on	-	-	2	ms
Time to initialize, include reset of	T start up	_	_	300	ms
TX_FAULT	1_3tart_up			300	1113
TX_FAULT from fault to assertion	Tx_Fault_on	-	-	1	ms
RX_LOS Assert Time	T_los_on	-	-	100	us
RX_LOS De-Assert Time	T_los_off	-	-	100	us

Performance Specifications – Optical Performance Specifications – Optical


(1310nm DFB and PIN, 10km)

Parameter	Symbol	Min	Тур.	Max	Unit			
Transmitter								
Centre Wavelength	λς	1270	1310	1355	nm			
Side Mode	SMSR	30	_	_	dB			
Suppression Ratio	3141311	30			ab_			
Spectral Width (-20dB)	Δλ	-	-	1	nm			
Average Output Power*note9	Pout	-8.2	-	0.5	dBm			
Extinction Ratio	ER	3.5	-	-	dB			
Average Power of OFF Transmitter	Pout-off	-	-	-30	dBm			
Transmitter Dispersion Penalty	TDP	-	-	3.2	dB			
Optical Return Loss Tolerance	ORLT	-	-	12	dB			
Output Optical Eye		Complia	nt with IEEE802.	3ae-2005				
		Receiver						
Centre Wavelength	λς	1260	-	1610	nm			
Receiver Sensitivity*note10	SEN	-	-	-14.4	dBm			
Receiver Overload	P _{max}	0.5	-	-	dBm			
LOS De-Assert	LOSp	-	-	-15	dBm			
LOS Assert	LOSA	-25	-	-	dBm			
LOS Hysteresis Note9: Output is coupled into a 9/125ui	LOSH .	0,5	-	4	dB			


Note10: Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, BER \leq 10-12.

Note14: Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, BER \leq 10-12.

SFP Transceiver Electrical Pad Layout

Host PCB SFP+ pad assignment top view

SFP+ module contact assignment

Pin Function Definitions

Pin Num.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note 19
2	TX Fault	Transmitter Fault Indication	3	Note 15
3	TX Disable	Transmitter Disable	3	Note 16, Module disables on high or open.
4	SDA	Module Definition 2	3	2-wire Serial Interface Data Line.
5	SCL	Module Definition 1	3	2-wire Serial Interface Clock.
6	MOD-ABS	Module Definition 0	3	Note 17
7	RS0	RX Rate Select (LVTTL).	3	Rate Select 0, optionally controls SFP+ module receiver. This pin is pulled low to VeeT with a >30K resistor
8	LOS	Loss of Signal	3	Note 18
9	RS1	TX Rate Select (LVTTL).	1	Rate Select 1, optionally controls SFP+ module transmitter. This pin is pulled low

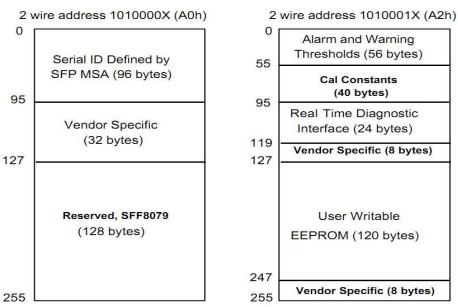
				to VeeT with a >30K resistor
10	VeeR	Receiver Ground	1	Note 19
11	VeeR	Receiver Ground	1	Note 19
12	RD-	Inv. Received Data Out	3	Note 20
13	RD+	Received Data Out	3	Note 20
14	VeeR	Receiver Ground	1	Note 19
15	VccR	Receiver Power	2	3.3V ± 5%, Note 21
16	VccT	Transmitter Power	2	3.3V ± 5%, Note 21
17	VeeT	Transmitter Ground	1	Note 19
18	TD+	Transmit Data In	3	Note 22
19	TD-	Inv. Transmit Data In	3	Note 22
20	VeeT	Transmitter Ground	1	Note 19

Note15: TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K_{\rm resistor}$ on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note16: TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7K – 10 K_ resistor. Its states are: Low: Transmitter on; High: Transmitter Disabled; Open: Transmitter Disabled.

Note17: Module Absent, connected to VeeT or VeeR in the module.

Note18: LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K-10K_{\rm resistor}$. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.


Note19: The module signal ground contacts, VeeR and VeeT, should be isolated from the module case.

Note 20: RD-/+: These are the differential receiver outputs. They are AC coupling that is done inside the module and is thus not required on the host board.

Note21: VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V \pm 5\%$ at the SFP connector pin. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. VccR and VccT may be internally connected within the SFP transceiver module.

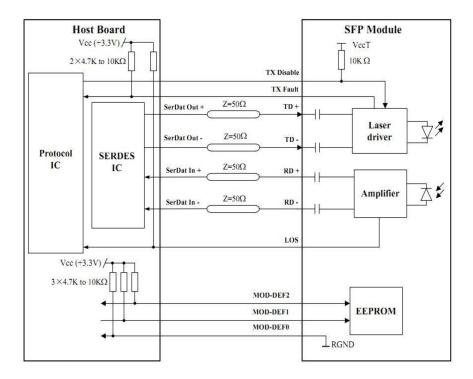
Note 22: TD-/+: These are the differential transmitter inputs. They are AC-coupled that is done inside the module and is thus not required on the host board.

Digital Diagnostic Functions

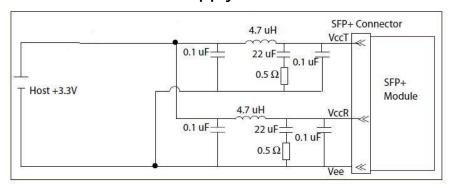
Digital Diagnostic Memory Map Specific Data Field Descriptions

- 1) Trixon SFP+ transceiver support the 2-wire serial communication protocol as defined in SFP MSA, in which defines a 256-byte memory map in EEPROM at 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface be assigned with 8 bit address 1010001X (A2h). Additionally, SFP transceivers provide a unique digital diagnostic monitoring interface (DDMI), which allows real-time access to product operating parameters such as transceiver supply voltage, transceiver temperature, transmitted optical power, laser bias current and received optical power. It also defines alarm and warning threshold, which alerts end-users when particular operating parameters are outside of factory setting.
- 2) When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into those segments of the EEPROM that are not write-protected. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.
- 3) Digital diagnostics for the TPS-TGxx-xxDxR are internally calibrated by default: Calibration and alarm/warning threshold data is written during device manufacturing.

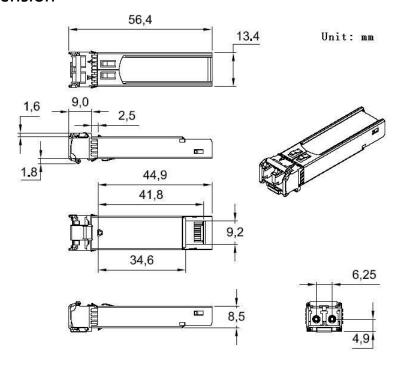
Digital Diagnostic Monitoring Specifications


Monitor accuracy								
Parameter	Min	Тур	Max	Units				
Internally measured transceiver temperature	-	-	±3	°C				
Internally measured transceiver supply voltage	-	-	±3%	V				
Measured TX bias current	-	-	±10	%				
Measured TX output power	-	-	±3	dBm				
Measured RX received average optical power	-	-	±3	dBm				

Dynamic range for operation*Note23


Parameter		H-Alarm	H-Warnin	L-Warning	L-Alarm	Units	
			g				
Internally measured	ST	+85	+80	-5	-10	٥٢	
transceiver temperature	IT	+100	+95	-35	-40		
Internally measured transceiver supply voltage		3.63	3.47	3.13	2.97	V	
	VCSEL Laser	12	11	2	1		
Measured TX bias current	FP/DFB Laser	120	110	10	5	mA	
	EML Laser	130	120	10	5		
Measured TX output power		Pout_MAX+1	Pout_MAX	Pout_MIN	Pout_MIN-1	dBm	
Measured RX received average optical power		Overload+1	Overload	SEN	SEN-2	dBm	

Note23: It is permissible to be adjusted according to the manufacturer's testing result.


Recommended Circuit

Recommended Host Board Power Supply Circuit

Mechanical Dimension

Eye Safety

These transceivers are Class 1 laser products. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: http://www.trixontech.com

Or contact Trixon Inc. listed at the end of the documentation to get the latest document.

Notice

Trixon reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Trixon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Add: # 202, Section A, Building 1 No.209, Sanse Road, Jinjiang District Industry Park Chengdu 610063. Sichuan P.R. CHINA

Tel: (+86) 028-85925400/Fax: (+86) 028-85925445

E-mail: info@trixontech.com http://www.trixontech.com

© Copyright Trixon 2014 All rights reserved.

