40G QSFP+ ER4 Transceiver Datasheet

Features:

- 4 independent full-duplex channels up to 11.2Gbps data rate per wavelength
- Distance up to 40km
- Single 3.3V Power supply
- Utilizes two standard LC optical connector
- QSFP+ Hot Pluggable
- Compliant with the QSFP+ MSA SFF-8436 Specification
- Compliant with IEEE802.3ba
- I2C interface with integrated Digital Diagnostic Monitoring
- Maximum power consumption 3.5 W
- Operating Case Temperature Standard: 0°C ~+70°C

Applications:

• 40GBASE-ER4 40G Ethernet links

Product Description

1

Trixon 40G 10km QSFP+ ER4 Transcevier products is a 4x10G hot pluggable optical transceiver. The optical connectivity is based on two SMF LC connetors, one for Tx and one for Rx. The Tx and Rx each consist of 4*10GB/s CWDM channels, whose wavelengths are in the 1300nm range. The QSFP+-LR4 transceiver is designed for applications based on the IEEE802.3ba 40GBASE-ER4 standard of up to 40km reach.

Ordering information

Part No.	Data Rate	Laser	Fiber Type	Distance* ^{Note1}	Optical Interface	Temp. *Note2	DDMI
TQS-FG40-31DCR	40Gbps	1271nm DFB	SMF	MF 40km	LC	ST	
		1291nm DFB					V
		1311nm DFB					Y
		1331nm DFB					

Note1: with 9/125µm SMF

Note2: ST: -5 ~ +70 deg C

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883G	HBM class 1, 1000volts and above,
(ESD) to the	Method 3015.7	Contact discharge on Golden Finger.
Electrical Pins		
Electrostatic Discharge	EN 55024:1998+A1+A2	Compliant with standards.
to the enclosure	IEC-61000-4-2	
	GR-1089-CORE	
Electromagnetic	FCC Part 15 Class B	Compliant with standards Noise
Interference (EMI)	EN55022:2006	frequency range: 30MHz to 18 GHz.
	CISPR 22B :2006	System margins depend on customer
	VCCI Class B	host board and chassis design.
Immunity	IEC 61000-4-3	Compliant with standards.
	EN 55024:1998+A1+A2	
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	CDRH compliant and Class I laser
	EN (IEC) 60825-1:2007	product.
	EN (IEC) 60825-2:2004+A1	
Component Recognition	UL and CUL	Compliant with standards.
	EN60950-1:2006	
RoHS6	2002/95/EC 4.1&4.2	Compliant with standards*note3
	2005/747/EC 5&7&13	

Note3:

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for Trixon transceivers, because Trixon transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings*_{Note4}

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{cc}	0	+3.6	V
Operating Humidity		0	85	%

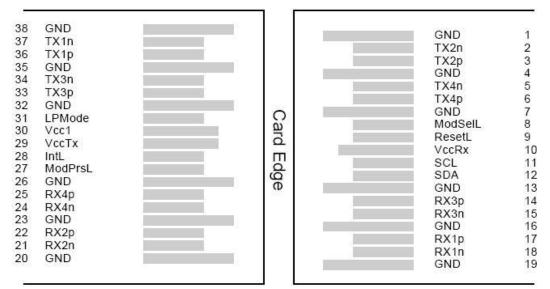
Note4: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case	-	0		70	°C	ST
Temperature	I I C	0	-	70	C	21
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Power Supply Current	I _{cc}	-	-	1100	mA	ST
I2C Clock Frequency	f _{cl}	-	-	100	kHz	

Performance Specifications – Electrical

Parameter	Symbol	Min	Тур.	Max	Unit	Notes			
Transmitter									
TX CML Inputs Voltage (Differential)	Vin	85	-	900	mVpp	AC coupled inputs			
LP_MODE Input Voltage – High		2.0	-	Vcc+0.3	V				
LP_MODE Input Voltage – Low		-0.3	-	0.8	V				
INTL Output Voltage – High		2.4	-	Vcc+0.3	V	OC output, should be pull up with 4.7K – 10 K Ω on the host board			
INTL Output Voltage – Low		-	-	0.8	V	I _{OL} = 1mA			
		Receive	er						
CML Outputs Voltage (Differential)	Vout	200	-	900	mVpp	AC coupled outputs			
Output Impedance (Differential)	Zout	-	100	-	ohm				
ModPrsL and IntL, V out high	VOH	VCC-0.5		VCC+0.3	V				
ModPrsL and IntL, V out low	VOL	0		0.4	V				
Output Transition Time		12			ps	20%~80%			


Performance Specifications – Optical

Parameter	Symbol	Min	Тур.	Max	Unit	
	Tr	ansmitter				
		1264.5	1271	1277.5		
		1284.5	1291	1297.5		
Centre Wavelength	λc —	1304.5	1311	1317.5	nm	
	-	1324.5	1331	1337.5		
Transmitter Signal Rate			10.3125		Gbps	
SMSR		30			dB	
TDP, each Lane	TDP			2.6	dB	
Optical Return Loss Tolerance	TOL			20	dB	
Total Average Launch Power				10.5	dBm	
Average Output Power per Lane	Pout	-3.7	-	4.5	dBm	
Difference in Launch Power	Ptx,diff			4.7	dB	
between any Two Lanes (OMA)						
OMA–TDP per Lane	OMA - TDP	-1.5			dBm	
Relative Intensity Noise	RIN			-128	dB/Hz	
Optical Return Loss Tolerance	ORLT			20	dB	
Transmitter Reflectance	Tr			-12	dB	
Extinction Ratio	ER	5.5	-	-	dB	
Output Optical Eye	Compliant With IEEE Std 802.3ba-2010					

Parameter	Symbol	Min	Тур.	Max	Unit
		Receiver			
		1264.5	1271	1277.5	
Contro Wayalanath		1284.5	1291	1297.5	200
Centre Wavelength	λς	1304.5	1311	1317.5	nm
		1324.5	1331	1337.5	
Receiver Sensitivity*note5	SEN	-	-	-18	dBm
Average Rx Power per Lane		-20.2		-1.5	dBm
Receiver Overload	Pmax	3.8	-	-	dBm
LOS De-Assert	LOSD	-	-	-20	dBm
LOS Assert	LOSA	-35	-	-	dBm
LOS Hysteresis	LOSH	0.5	-	-	dB

Note5: Measured with a PRBS 2^{31} -1 test pattern @10.3125Gbps, BER \leq 10-12.

QSFP+ Transceiver Electrical Pad Layout

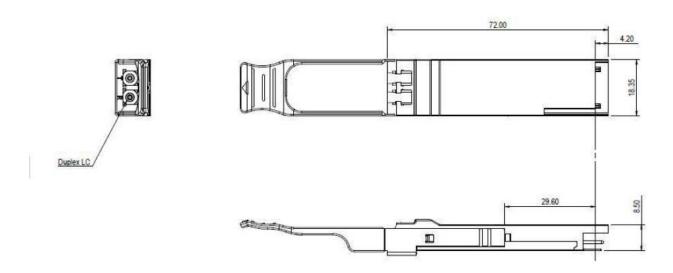
Top Side Viewed from Top

Bottom Side Viewed from Bottom

Host PCB QSFP+ pad assignment top view

Pin Function Definitions

PIN	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+ 3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	


26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Note1. GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

Note2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently.

Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Mechanical Dimension

Eye Safety

These transceivers are Class 1 laser products. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: <u>http://www.trixontech.com</u> Or contact Trixon Inc. listed at the end of the documentation to get the latest document.

Notice

Trixon reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Trixon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Add: # 202, Section A, Building 1 No.209, Sanse Road, Jinjiang District Industry Park Chengdu 610063. Sichuan P.R. CHINA Tel: (+86) 028-85925400/Fax: (+86) 028-85925445 E-mail: info@trixontech.com http://www.trixontech.com © Copyright Trixon 2014 All rights reserved.

