#### 1000BASE-T

# **Copper SFP Transceiver**



#### **Features:**

- Operating data rate up to 1.25 Gbps
- Compact RJ-45 connector assembly
- Single 3.3V power supply and Low power dissipation
- Hot Pluggable
- 1000 BASE-T operation in the host systems with SERDES interface
- Support TX\_Disable
- RoHS Compliant and Lead-Free
- Metal with lower EMI and excellent ESD performance
- Commercial operating temperature range:

ST:  $0 \sim +70 \text{ deg C}$ IT:  $-40 \sim +85 \text{ deg C}$ 



#### **Applications:**

- Switch to Switch interface
- Switch backplane applications
- File sever interface

# **Product Description**

The 1000BASE-T Copper SFP Transceiver is small form factor pluggable transceiver. They are compatible with SFF-8074i Multi- Sourcing Agreement (MSA) and comply with Gigabit Ethernet standard as specified in IEEE Std 802.3. They are compliant with RoHS and lead-free per Directive 2002/95/EC. The 1000BASE-T physical layer IC (PHY) can be accessed via I2C bus, allowing access to all PHY settings and features. TCS-GEM1-00NCR: SERDES interface copper SFP with 1000BASE-X auto-negotiation default, support TX\_Disable.

# **Ordering information**

| Part No.       | Data Rate | Distance*Note1 | Interface | Bail color | Temp.*Note2 | DDMI |
|----------------|-----------|----------------|-----------|------------|-------------|------|
| TCS-GEM1-00NCR | 1000M     | 100m           | RJ45      | NA         | ST          | NO   |
| TCS-GEM1-00NIR | 1000M     | 100m           | RJ45      | NA         | IT          | NO   |

Note1: Over unshielded twisted pair (UTP) Category 5 Cable

# Regulatory compliance

| Feature                 | Standard            | Performance                             |
|-------------------------|---------------------|-----------------------------------------|
| Electrostatic Discharge | MIL-STD-883G        | Class 1C (>1000 V)                      |
| (ESD) to the            | Method 3015.7       |                                         |
| Electrical Pins         |                     |                                         |
| Electrostatic Discharge | EN 55024:1998+A1+A2 | Compliant with standards                |
| to the enclosure        | IEC-61000-4-2       |                                         |
|                         | GR-1089-CORE        |                                         |
| Electromagnetic         | FCC Part 15 Class B | Compliant with standards Noise          |
| Interference (EMI)      | EN55022:2006        | frequency range: 30                     |
|                         | CISPR 22B :2006     | MHz to 6 GHz. Good system               |
|                         | VCCI Class B        | EMI design practice required to achieve |
|                         |                     | Class B margins.                        |
|                         |                     | System margins depend on customer       |
|                         |                     | host board and chassis design.          |
| Immunity                | EN 55024:1998+A1+A2 | Compliant with standards.               |
|                         | IEC 61000-4-3       | 1kHz sine-wave, 80% AM,                 |
|                         |                     | from 80 MHz to 1 GHz. No effect on      |
|                         |                     | transmitter/receiver performance is     |
|                         |                     | detectable between these limits.        |
| Component Recognition   | UL and CUL          | TUV Certificate No. E344594             |
|                         | EN60950-1:2006      | (CB:JPTUV-053877)                       |
| RoHS2.0                 | 20011/65/EU         | Compliant with standards                |

# Absolute Maximum Ratings\* Note3

| Parameter           | Symbol          | Min  | Max | Unit |  |
|---------------------|-----------------|------|-----|------|--|
| Storage Temperature | TS              | -40  | +85 | °C   |  |
| Supply Voltage      | V <sub>CC</sub> | -0.5 | 4.0 | V    |  |
| Operating Humidity  | -               | 5    | 95  | %    |  |

Note3: Exceeding any one of these values may destroy the device permanently.

# **Recommended Operating Conditions**

| Parameter                  | Symbol          | Min  | Typical | Max  | Unit |
|----------------------------|-----------------|------|---------|------|------|
| Power Supply Voltage       | V <sub>cc</sub> | 3.13 | 3.30    | 3.47 | V    |
| Power Supply Current       | I <sub>cc</sub> | -    | -       | 400  | mA   |
| Surge current              | Isurge          |      |         | 30   | mA   |
| Case Operating Temperature | т               | 0    | -       | +70  | - °C |
|                            | Гор             | -40  |         | +85  | - (  |

| Data Rate (note4)             | - | - | 1000 | -   | Mbps |
|-------------------------------|---|---|------|-----|------|
| Transmission Distance (note5) | - |   |      | 100 | m    |

### **Low Speed Signals Electrical Characteristics**

| Parameter   | Symbol          | Min          | Тур. | Max          | Unit |
|-------------|-----------------|--------------|------|--------------|------|
| Output LOW  | V <sub>OL</sub> | 0            | -    | 0.5          | V    |
| Output HIGH | V <sub>OH</sub> | Host_Vcc-0.5 | -    | Host_Vcc+0.3 | V    |
| Input LOW   | V <sub>IL</sub> | 0            | -    | 0.8          | V    |
| Input HIGH  | V <sub>IH</sub> | 2            | -    | Vcc+0.3      | V    |

# **High Speed Electrical Interface, Transmission Line-SFP**

| Parameter                   | Symbol           | Min | Тур. | Max | Unit |
|-----------------------------|------------------|-----|------|-----|------|
| Line Frequency (note6)      | Vout             | -   | 125  | 0   | MHz  |
| Tx Output Impedance (note7) | Z <sub>Out</sub> | 90  | 100  | 110 | Ω    |
| Rx Input Impedance (note7)  | Z <sub>In</sub>  | 90  | 100  | 110 | Ω    |

### **High Speed Electrical Interface, Host-SFP**

| Parameter                           | Symbol    | Min | Тур. | Max  | Unit |
|-------------------------------------|-----------|-----|------|------|------|
| Differential data input swing       | Zin       | 500 | -    | 2400 | mV   |
| Differential data Output swing      | $Z_{Out}$ | 350 | -    | 1400 | mV   |
| Waiting time For Restarting (note8) |           | -   | -    | 10   | us   |
| Rise/Fall Time                      |           | =   | -    | 180  | ms   |
| Tx Input Impedance                  | $Z_{ln}$  | 90  | 100- | 110  | Ω    |
| Rx Output Impedance                 | $Z_{Out}$ | 90  | 100  | 110  | Ω    |

Note4. the module will operate as 1000BASE-T when the host system uses SERDES interface.

Note5. Over unshielded twisted pair (UTP) Category 5 Cable

Note6. 5-level encoding, per IEEE 802.3

Note7. Differential, for all frequencies between 1MHz and 125MHz

Note8.From TX\_Disable rising edge to Link Down

# **SFP Transceiver Electrical Pad Layout**

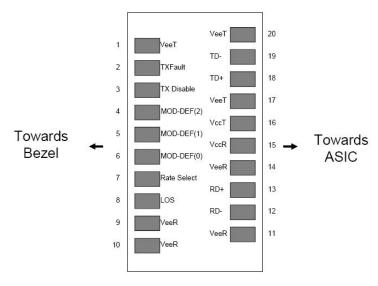



Diagram of Host Board Connector Block Pin Numbers and Names

#### **Pin Function Definitions:**

| Pin Num. | Name              | Function                                 |
|----------|-------------------|------------------------------------------|
| 1        | $V_{ee}T$         | Transmitter Ground                       |
| 2        | TX Fault          | Transmitter Fault(Note 9)                |
| 3        | TX Disable        | Transmitter Disable(Note 10)             |
| 4        | MOD_DEF2          | Module Definition 2 (Note 11)            |
| 5        | MOD_DEF1          | Module Definition 1 (Note11)             |
| 6        | MOD_DEF0          | Module Definition 0 (Note11)             |
| 7        | Rate Select       | No connect                               |
| 8        | LOS               | Loss of Signal indication (Note 12)      |
| 9        | $V_{ee}R$         | Receiver Ground                          |
| 10       | $V_{ee}R$         | Receiver Ground                          |
| 11       | $V_{ee}R$         | Receiver Ground                          |
| 12       | RD-               | Inverted Received Data Out (Note 13)     |
| 13       | RD+               | Non-inverted Received Data Out (Note 13) |
| 14       | $V_{ee}R$         | Receiver Ground                          |
| 15       | $V_{CCR}$         | Receiver Power Supply (Note 14)          |
| 16       | $V_{CCT}$         | Transmitter Power Supply (Note 14)       |
| 17       | V <sub>ee</sub> T | Transmitter Ground                       |
| 18       | TD+               | Non-Inverted Transmit Data in (Note 15)  |
| 19       | TD-               | Inverted Transmit Data in (Note 15)      |
| 20       | $V_{ee}T$         | Transmitter Ground                       |

Note9. Not Support and tied to GND within the module

**Note10.** TX disable is used to enable or disable PHY within the module. It is pulled up within the module with a  $4.7 - 10 \text{ K}\Omega$  resistor:

Low (0 - 0.8V): PHY enabled (>0.8, < 2.0V): Undefined High (2.0 - 3.465V): PHY Disabled Open: PHY Disabled

Note11. Mod-Def 0,1,2. These are the module definition pins. They should be pulled up to

VCCT/VCCR through a  $4.7K - 10K\Omega$  resistor on the host board.

Mod-DEFO is grounded by the module to indicate that the module is present

Mod-DEF1 is the clock line of two wire serial interface for serial ID

Mod-DEF2 is the data line of two wire serial interface for serial ID

Note12. Los is used as link indication feature.

**Note13.** RD-/+: These are the differential receiver outputs. They are AC coupled 100  $\,\Omega$  Differential lines which should be terminated with 100  $\,\Omega$  (differential) at host. The AC coupling is done inside the module and not be required on host.

**Note14.** VccR and VccT are the receiver and transmitter power supplies. They are defined as  $3.3V\pm5\%$  at the SFP connector pin. Maximum supply current is 400 mA.

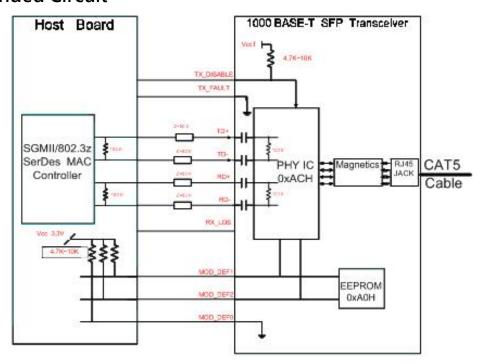
Note15. TD-/+: These are the differential transmitter inputs. They are AC coupled, Differential lines with  $100\Omega$  differential termination inside the module. The AC coupling is done inside the module and not be required on host.

# **Recommend Software Configuration for PHY IC**

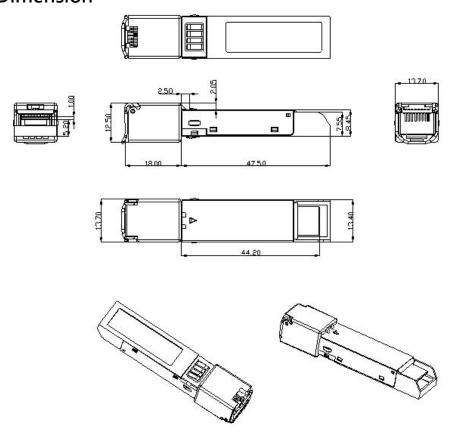
TCS-GEM1-00NCR uses the Marvell 88E1111 Physical Layer IC (PHY) to convert between the serial interface and 1000BASE-T interfaces. This chip has a number of useful features available on internal registers that can be accessed via the 2-wire bi-directional serial interface at address 0xAC. Each register is 2 bytes wide and details for accessing the register can be found at:

http://www.Marvell.com

#### How to enable TCS-GEM1-00NCR work at 10/100/1000BASE-T


TCS-GEM1-00NCR have been configured to 1000BASE-T SERDES operation mode by hardware, but they can be configured to SGMII (without clocks) interface operation mode by software when host is SGMII interface.

| PHY Address: 0xACH |            |                                                |  |  |  |
|--------------------|------------|------------------------------------------------|--|--|--|
| Register Address   | Write Data | Description                                    |  |  |  |
| 0x1BH              | 0x9084H    | Enable SGMII mode                              |  |  |  |
| 0x00H              | 0x9140H    | Software reset to allow changes to take effect |  |  |  |
| 0x16H              | 0x0000H    | Select page 0                                  |  |  |  |
| 0x09H              | 0x0F00H    | Advertise 1000BASE-T FULL/HALF-Duplex          |  |  |  |
| 0x04H              | 0x0DE1H    | Advertise 100/10BASE-T FULL/HALF-Duplex        |  |  |  |
| 0x00H              | 0x9140H    | Software reset to allow changes to take effect |  |  |  |


#### How to disable 1000BASE-X auto-negotiation on TCS-GEM1-00NCR

| PHY Address: 0xACH |            |                          |  |  |  |
|--------------------|------------|--------------------------|--|--|--|
| Register Address   | Write Data | Description              |  |  |  |
| 0x16H              | 0x0001H    | Select page 1            |  |  |  |
| 0x00H              | 0x8140H    | Disable Auto-negotiation |  |  |  |
| 0x16H              | 0x0000H    | Select page 0            |  |  |  |

#### **Recommended Circuit**



#### **Mechanical Dimension**



### **Obtaining Document**

You can visit our website: http://www.trixontech.com

Or contact Trixon Inc. listed at the end of the documentation to get the latest document.

#### **Notice**

Trixon reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Trixon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Add: # 202, Section A, Building 1 No.209, Sanse Road, Jinjiang District Industry Park Chengdu

610063. Sichuan P.R. CHINA

Tel: (+86) 028-85925400/Fax: (+86) 028-85925445

E-mail: info@trixontech.com http://www.trixontech.com

© Copyright Trixon 2014 all rights reserved.

