40G QSFP+ PSM4

Datasheet

Features:

- 4 independent full-duplex channels
- Up to 10.3125Gbps data rate per channel
- MPO optical connector
- Hot-pluggable QSFP+ form factor
- Digital diagnostic capabilities
- Capable of over 10Km transmission on SMF
- Single +3.3V power supply
- Operating case temperature: 0~70℃
- Low power consumption < 2.5W
- RoHS-6 compliant

Applications:

- Local Area Network(LAN)
- Wide Area Network(WAN)
- Datacenter, Ethernet switch and router applications

Product Description

The TQS-FG10-31DCM is a parallel 40Gbps Quad Small Form-factor Pluggable (QSFP) optical module. It provides increased port density and total system cost savings. The QSFP+ full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10.31255Gbps operation for an aggregate data rate of 40Gbps over 10 km.

An optical fiber cable with an MPO/MTP connector can be plugged into the QSFP+ module receptacle. The module operates by a single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information.

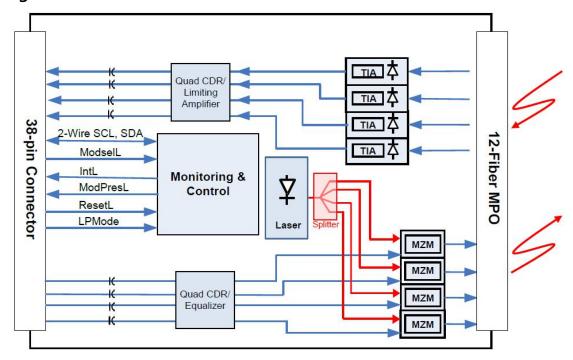
The TQS-FG10-31DCM is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP Multi-Source Agreement (SFF-8436). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very high functionality and feature integration, accessible via a two-wire serial interface.

Ordering information

Part No.	Data Rate	Laser	Fiber Type	Distance*Note1	Optical Interface	Bail Color	Temp. *Note2	DDMI
TQS-FG10-31DCM	40Gbps	1310nm-DFB	SMF	10Km	MPO	Beige	ST	Υ

Note1: 10Km with 9/125 μ m SMF Note2: ST: -5 \sim +70 deg C

Regulatory Compliance


Feature	Standard	Performance
Electrostatic Discharge	MIL-STD-883G	HBM class 1, 1000volts and above,
(ESD) to the	Method 3015.7	Contact discharge on Golden Finger.
Electrical Pins		
Electrostatic Discharge	IEC-61000-4-2	Compliant with standards.
to the enclosure	GR-1089-CORE	
Electromagnetic	FCC Part 15 Class B	Compliant with standards Noise
Interference (EMI)	EN55022:2006	frequency range: 30MHz to 18 GHz.
	VCCI Class B	System margins depend on customer
		host board and chassis design.
Immunity	IEC 61000-4-3	Compliant with standards.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11	CDRH compliant and Class I laser
	EN (IEC) 60825-1:2007	product.
	EN (IEC) 60825-2:2004+A1	
Component Recognition	UL and CUL	Compliant with standards.
	EN60950-1:2006	
RoHS6	2002/95/EC 4.1&4.2	Compliant with standards*note3
	2005/747/EC 5&7&13	

Note3:

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for Trixon transceivers, because Trixon transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Block Diagram

Absolute Maximum Ratings*Note4

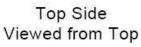
Parameter	Symbol	Min	Max	Unit	
Storage Temperature	Tst	-40	85	degC	
Relative Humidity (non-condensation)	RH	5	85	%	
Supply Voltage	VCC	-0.3	3.6	V	
Voltage on LVTTL Input	Vilvttl	-0.5	VCC+0.5	V	

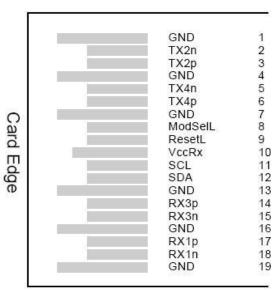
Note4: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Operating Case Temperature	Торс	0	-	70	$^{\circ}$	
Power Supply Voltage	VCC	3.135	-	3.465	V	
Fiber Length		10	-	-	Km	


Performance Specifications – Electrical


Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Data Rate, each Lane		-	10.3125	-	Gbps	
Power Consumption (XLPPI)		-	-	2.5	W	
Supply Current	ICC	-	-	1.1	Α	
Control I/O Voltage, High	VIH	2.0	-	VCC	V	
Control I/O Voltage, Low	VIL	0	-	0.8	V	
Tx Input Diff Voltage	VI	300	-	1100	mV	
Tx Input Diff Impedance	ZIN	90	100	110	Ω	
Rx Output Diff Voltage	Vo	500		800	mV	
Rx Output Diff Impedance	ZOUT	90	100	110	Ω	

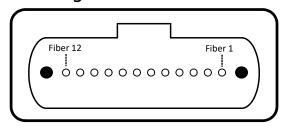

Performance Specifications – Optical

Parameter	Symbol	Min	Тур.	Max	Unit
	7	Fransmitter			
Center Wavelength	λt	1260		1355	nm
Side-mode Suppression Ratio	SMSR	30	-	-	nm
Average Optical Power, each Lane	Pavg	-8.2	-	+0.5	dBm
TDP, each Lane		-	-	3.2	dB
Extinction Ratio	ER	3.5	-	-	dB
Transmitter Eye Mask Definition		Compli	ed with 100GBA	SE-R	
Average Launch Power OFF	Doff			30	dD.vo
Transmitter, each Lane	Poff	-	-	-30	dBm
		Receiver			
Center Wavelength	Λr	1260		1355	nm
Average Power at Receiver Input,		-12.5		+0.5	dBm
each Lane		-12.5	-	+0.3	иын
Receiver Reflectance		-	-	-12	dB
Los Assert	LosA	-30	-	-	dBm
Los De-Assert	LosD	-		-12	dBm
Los Hysteresis	LosH	0.5	-	4	dB

Pin Descriptions

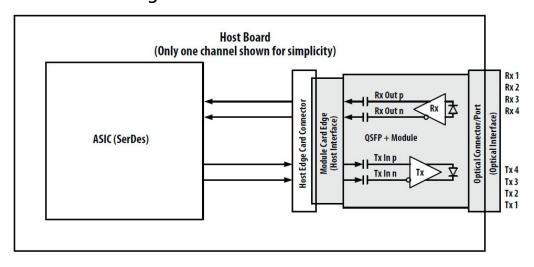
Bottom Side Viewed from Bottom

Pin Function Definitions

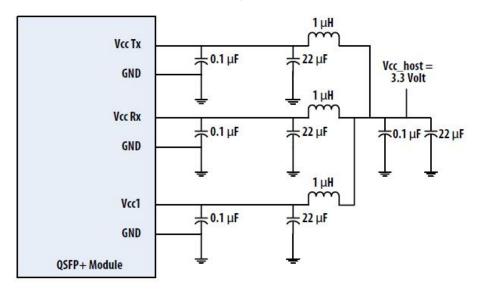

PIN	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	

4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	t
7 GND			Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+ 3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1
		1 1 2 3	(0055	

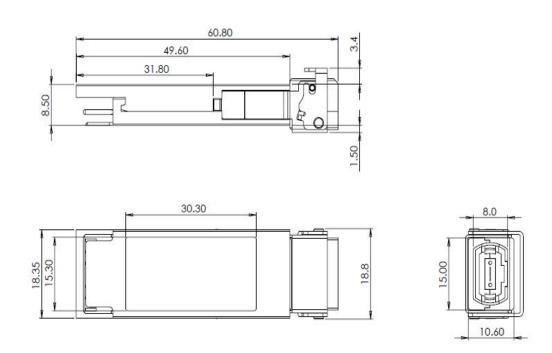
Note1. GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.


Note2. VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Optical Interface Lanes and Assignment



Fiber #	Lane Assignment
1	RX0
2	RX1
3	RX2
4	RX3
5	Not used
6	Not used
7	Not used
8	Not used
9	TX3
10	TX2
11	TX1
12	TX0


Application Reference Diagram

Recommended Host Board Power Supply Circuit

Mechanical Dimension

Eye Safety

These transceivers are Class 1 laser products. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.

Obtaining Document

You can visit our website: http://www.trixontech.com

Or contact Trixon Inc. listed at the end of the documentation to get the latest document.

Notice

Trixon reserves the right to make changes to or discontinue any optical link product or service identified in this publication, without notice, in order to improve design and/or performance.

Applications that are described herein for any of the optical link products are for illustrative purposes only. Trixon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Add: # 202, Section A, Building 1 No.209, Sanse Road, Jinjiang District Industry Park Chengdu

610063. Sichuan P.R. CHINA

Tel: (+86) 028-85925400/Fax: (+86) 028-85925445

E-mail: info@trixontech.com http://www.trixontech.com © Copyright Trixon 2014 All rights reserved.

